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Based on a self-consistent wave approximation (SCWA) for describing the

grazing-incidence small-angle X-ray scattering (GISAXS) from a random rough

surface, the optical theorem applicability is tested. Asymptotic solutions for the

specular and diffuse GISAXS waves are used to evaluate the X-ray energy

flows through the planes far away from the surface interface, z ! �1. The

conventional Fresnel expressions multiplied by the corresponding Debye–

Waller factors are used for the specular waves, while the diffuse X-ray energy

flows are described in terms of the product of the statistical scattering factors

�R(�, �0) and �T(�, �0) and the Fourier transform of the two-point cumulant

correlation function g2(|x1 � x2|/‘) (� is the grazing scattering angle with the

surface, ’ is the azimuth scattering angle; �0 is the grazing-incidence angle).

It is shown that the optical theorem within the SCWA does hold in the case

of infinite correlation lengths ‘ ! 1 (more precisely, k‘�0
2 >> 1, k is the

X-ray wavenumber in a vacuum). In a general case of the typical-valued

{�0, �, ‘} parameters the reflected and transmitted GISAXS wave flows are

numerically integrated over the scattering reciprocal space to probe the optical

theorem.

1. Introduction

As is well known, grazing-incidence small-angle X-ray scat-

tering (GISAXS) is a unique tool for the non-destructive

characterization of solid/liquid medium surfaces and layered

structures with a thickness in the mesoscopic range of lengths

from a few nanometres up to some micrometres. It is parti-

cularly important for investigating the self-organized forma-

tion of semiconductor nanostructures (see, e.g., Pietsch et al.,

2004; Schmidbauer et al., 2008; Renaud et al., 2009 and refer-

ences therein); it has proved to be very effective for the

non-destructive characterization of semiconductor quantum

dots and wires (Schmidbauer et al., 2008). In particular, the

electron density of epitaxic SiGe nano-islands has been

investigated in depth using coherent GISAXS (Zozulya et al.,

2008).

Most of the experimental and theoretical works to date

have been concerned with specular GISAXS, which has been

mainly interpreted in terms of the conventional Fresnel

coefficients multiplied by the corresponding Debye–Waller

factors. The latter are exponential factors and quadratically

depend on the root-mean-square (r.m.s.) roughness � of a

random rough interface (the well known Debye–Waller

approach; see, e.g., Nevot & Croce, 1980; Sinha et al., 1988; de

Boer, 1994, 1995; Lazzari, 2002; Chukhovskii, 2009).

An attempt to go beyond the Debye–Waller approximation

for specular GISAXS and take into account the X-ray

multiple-scattering effects has been made by Chukhovskii &

Polyakov (2010).

The diffuse reflectivity scan Rdif(�, ’; �0) is particularly

informative and can be recorded in the angular range {�, ’}

with necessary resolution at the given grazing-incidence angle

�0 (� is the scattering angle with the surface and ’ is the

scattering azimuth angle).

Note that the conventional Born approximation is invalid to

describe the diffuse scan Rdif(�, ’; �0). In particular, in its

framework one cannot explain Yoneda’s peak of the diffuse

scan Rdif(�, ’; �0) experimentally observed at scattering angles

� very close to �cr, the critical angle of incidence for total

external reflection (Yoneda, 1963). Instead, the distorted-

wave Born approximation (DWBA) is required to solve the

integral wave equation and correctly describe the GISAXS

wave propagation through a rough interface of vacuum and

medium (Petrashen’ et al., 1983; Vinogradov et al., 1985; Sinha

et al., 1988).

The reverse issue of retrieving physical parameters such

as, in particular, the medium density [associated with the

critical angle �cr = (�Re�)1/2], the r.m.s. roughness �, and

the two-point cumulant correlation function g2(|x1 � x2|/‘)

from experimental and specular, Rspec(�, �0), and diffuse,
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Rdif(�, ’; �0), data is a good challenge for the GISAXS

theory.

Clearly, the relevant scattering theory for describing the

GISAXS from rough surfaces is of special significance. As

pointed out by Sinha et al. (1988), the basic manifestation of

the GISAXS theory is the optical theorem, which is nothing

other than the energy conservation law. Unfortunately, it does

not hold within the DWBA. Recently, applying the perturba-

tion theory in order to solve the integral wave equation

(IWE), the optical theorem applicability has been investigated

by Kozhevnikov (2010). It was proved that the optical theorem

holds provided that the diffuse GISAXS can be evaluated in

the first-order DWBA, while for the specular GISAXS the

IWE solution should be determined up to the second-order

DWBA inclusively.

On the other hand, the implementation of the optical

theorem is still open for relatively large values of the r.m.s.

roughness parameter �, when the perturbation theory cannot

be applied.

In this paper, which aims to go beyond the DWBA method,

the Green function formalism is applied to analyse the optical

theorem applicability based on a self-consistent wave

approximation (SCWA) proposed in Chukhovskii (2011).

The paper is organized as follows: in x2 we shall use the

Green function (point-source) formalism to convert the

stationary wave equation to the integral form. The kernel

function of the Green function compound represents by itself

the bilinear superposition of the two standard Fresnel solu-

tions of the GISAXS from the flat surface. In x3, we will use

the SCWA to analytically derive asymptotic solutions for the

X-ray wavefield propagating within a vacuum and medium far

away from the rough surface interface z ! �1. In x4, the

Gaussian model to statistically describe a random rough

surface in terms of the r.m.s. interface roughness � and two-

point cumulant correlation function g2(|x1 � x2|/‘) is utilized.

Further, within the Gaussian statistics the analytical expres-

sions for the statistical scattering factor �R �; �0ð Þ and

�T �; �0ð Þ related to diffuse reflection and transmission flows,

Rdif(�, ’; �0) and Tdif(�, ’; �0), are derived, whereas the

conventional Debye–Waller factors for the specular ones,

Rspec(�, �0) and Tspec(�, �0), are obtained.

Specifically, following Kozhevnikov (2010), the optical

theorem is formulated in the form of equality of the X-ray

energy flows through two parallel planes for z! �1 in the

case of a non-absorbing medium, Im� = 0.

We shall show that the optical theorem within the SCWA is

strictly satisfied in the case of infinite two-point correlation

lengths ‘!1, more precisely k‘�0
2
� 1, where k = |k0| is the

X-ray wavenumber in a vacuum.

In x5, to probe the optical theorem applicability for

the typical-valued parameter array of {�0, �, ‘}, the

diffuse reflection and transmission flows, Rdif(�, ’; �0) and

Tdif(�, ’; �0), are integrated over the whole angular range

(�, ’).

2. Integral wave equation. The Green function
formalism

With the aim of introducing the necessary mathematical

formalism, we will briefly repeat the theoretical problem

analysis up to equation (10) given in Chukhovskii (2011).

Let the incident X-ray plane wave Einc(r) = expðik0rÞ

impinge on a rough interface that separates a vacuum and

medium, where k0 = q0 + kzn is the incident wavevector, q0 is

the lateral wavevector component and kz = (k2
� q0

2)1/2 is the

internal-normal wavevector component along the z direction

perpendicular to the averaged flat surface z = 0, k = |k0| is the

wavenumber in a vacuum (see Fig. 1).

The TE-polarized X-ray wavefield component is assumed to

be under consideration. Recall that in the case of the GISAXS

TM-polarized X-rays for grazing incidence the results are the

same as for TE polarization (see, e.g., Sinha et al., 1988). For

reference, the X-ray wavelength � is of the order of 0.1 nm, the

complex electric susceptibility � � Re� + iIm�, Re� < 0 and

Im� > 0. In the case of interest the X-ray wavelength � is of

the order of 0.1 nm, Re� � �10�5 and Im� � 0.05|Re�| are

assumed.

In the case under consideration, the stationary wave

equation describes the GISAXS of a TE-polarized wavefield

propagating through a rough interface between a vacuum and

medium,

fr
2
þ k2
½1þ ��ðzÞ�gEðrÞ ¼ �k2��ðrÞEðrÞ; ð1Þ

where E(r) is the wavefunction for a TE-polarized electric

wavefield and the electric susceptibility deviation �� rð Þ has the

form

��ðrÞ ¼ �f�½z� hðxÞ� ��ðzÞg: ð2Þ

h(x) is the height of an actual rough surface at the point x

(assumed to be single valued); �(z) is the unit step function:

�(z) = 0 for z < 0 and �(z) = 1 for z > 0.

According to the basic idea of the Green function form-

alism, equation (1) can be converted into the IWE (cf. Vino-

gradov et al., 1985; Kozhevnikov, 2010; Chukhovskii, 2011):

EðrÞ ¼ E0ðrÞ � k2
R

d3r0Gðr; r0Þ��ðr0ÞEðr0Þ: ð3Þ
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Figure 1
GISAXS layout: k0 = q0 + kzn is the incident wavevector, kR = q0 � kzn
and jT = q0 + �zn are the wavevectors of the specular reflected and
transmitted waves, respectively; k = q� kz(q)n and j = q + �z(q)n are the
wavevectors of the reflected and transmitted diffuse waves, respectively; n
is the unit vector along the z direction perpendicular to the average flat
surface z = 0.



Herein, the Green (point-source) function G(r, r0) is defined

by

Gðr; r0Þ ¼ �ið4	Þ�2
R

d2q ½k�1
z ðqÞ þ �

�1
z ðqÞ�

	 exp½iqðx� x0Þ�

�
y2ðz; qÞy1ðz

0; qÞ; z 
 z0

y1ðz; qÞy2ðz
0; qÞ; z � z0

ð4Þ

in the twofold medium with the step-like abrupt electric

susceptibility �(r) = ��(z).

Functions y1(z, q) and y2(z, q) are the two eigenfunctions of

the stationary wave equation

d2y=dz2
þ fk2

½1þ ��ðzÞ� � q2
gy ¼ 0 ð5Þ

along the z direction and then they represent by themselves

the standard Fresnel solutions

y1ðz; qÞ ¼

(
exp½ikzðqÞz� þ R1ðqÞ exp½�ikzðqÞz� for z 
 0

T1ðqÞ exp½i�zðqÞz� for z � 0

y2ðz; qÞ ¼

(
T2ðqÞ exp½�ikzðqÞz� for z 
 0

exp½�i�zðqÞz� þ R2ðqÞ exp½i�zðqÞz� for z � 0

ð6Þ

in the direct and mirror-reversed GISAXS geometry, respec-

tively.

The reflection, R1(q) and R2(q), and transmission, T1(q) and

T2(q), coefficients take the standard Fresnel form

R1ðqÞ ¼
kzðqÞ � �zðqÞ

kzðqÞ þ �zðqÞ
and R2ðqÞ ¼

�zðqÞ � kzðqÞ

kzðqÞ þ �zðqÞ
;

T1ðqÞ ¼
2kzðqÞ

kzðqÞ þ �zðqÞ
and T2ðqÞ ¼

2�zðqÞ

kzðqÞ þ �zðqÞ
; ð7Þ

where the z components of the wavevectors involved in

expression (7) are defined by

kzðqÞ ¼ ðk
2 � q2Þ

1=2 and �zðqÞ ¼ ð�
2 � q2Þ

1=2
ð8Þ

related to the two-dimensional vector q that is parallel to the

plane z = 0, and �2 = k2(1 + �).

The free term E0(r) on the right-hand side of IWE [equation

(3)] can be chosen in the form

E0ðrÞ ¼ expðiq0xÞy1ðz; q0Þ ð9Þ

in accordance with the incident plane wave Einc(r) = expðik0rÞ.

Noteworthy is the fact that, as follows from the IWE

[equation (3)], beyond the integral operators over the vari-

ables (q, x), the integration range over the variable z is

determined by {�(z)��[z�h(x)]} and defines the behaviour

of reflected and transmitted waves for z! �1.

Correspondingly, the asymptotic GISAXS solutions can be

cast in the form

ERðx; zÞjz!�1 ¼ R1ðq0Þ exp½iðq0x� kzzÞ�

þ
i

2	

Z
d2q

kzðqÞ
exp½iqx� ikzðqÞz�ARðq; q0Þ;

ETðx; zÞjz!1 ¼ T1ðq0Þ exp½iðq0xþ �zzÞ�

þ
i

2	

Z
d2q

�zðqÞ
exp½iqxþ i�zðqÞz�ATðq; q0Þ

ð10Þ

where the scattering amplitudes AR q; q0ð Þ and AT q; q0ð Þ are

introduced as follows:

ARðq; q0Þ ¼ �
�k2

4	

Z
d2x1 expð�iqx1Þ

Zhðx1Þ

0

dz1 y1ðz1; qÞEðx1; z1Þ;

ATðq; q0Þ ¼ �
�k2

4	

Z
d2x1 expð�iqx1Þ

Zhðx1Þ

0

dz1 y2ðz1; qÞEðx1; z1Þ:

ð11Þ

Further, by using expressions (10) and (11), we will evaluate

the X-ray energy flows through two planes z!�1 far away

from plane z = 0,

QR ¼
1

k
Im

Z
S

d2x E
ðx; zÞ
@

@z
Eðx; zÞ

� �
for z!�1; ð12aÞ

QT ¼
1

k
Im

Z
S

d2x E
ðx; zÞ
@

@z
Eðx; zÞ

� �
for z!1; ð12bÞ

in the explicit form, namely, one obtains

QR ¼ 1� jR1ðq0Þj
2

� � kz

k
S2 þ

4	

k
Im ARðq0; q0ÞR



1ðq0Þ

� �
�

1

k

Z
d2q

kzðqÞ
jARðq; q0Þj

2
ð13aÞ

and

QT ¼ exp½�2zImð�zÞ�jT1ðq0Þj
2 Reð�zÞ

k
S2 �

4	

k
exp½�2zImð�zÞ�

	 Im ATðq0; q0ÞT


1 ðq0Þ�



z

� �
Reð��1

z Þ

þ
1

k

Z
d2q Re ��1

z ðqÞ
� �

jATðq; q0Þj
2 exp½�2zIm�zðqÞ�

ð13bÞ

(S2 is an area of the reference surface illuminated by incident

X-rays).

Conventionally, the optical theorem is formulated for a

non-absorbing medium, �* = �, putting QR ¼ QT, and omit-

ting exponentially small terms if they are on the right-hand

side of equation (13b). Note that the symbol :::ð Þ indicates an

average procedure.
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Therefore, the straightforward evaluation yields the

following relationship:

4	

k
Im ARðq0; q0ÞR



1ðq0Þ

� �
þ T1ðq0ÞIm ATðq0; q0Þ

� �
�ðqcr � q0Þ

� �
¼
R
jARðq; q0Þj

2 d�R þ ð1þ �Þ
1=2
R
jATðq; q0Þj

2 d�Tjqcr�q;

ð14Þ

which can be interpreted as the X-ray energy conservation law

in the case of the GISAXS from random rough surfaces

(Kozhevnikov, 2010).

Above, the solid-angle unit elements d�R and d�Tjqcr�q

(qcr = k cos �cr)

d�R ¼
d2q

kkzðqÞ
; d�T qcr�q

			 ¼
d2q

��zðqÞ
ð15Þ

are introduced for the scattered and transmitted beams,

respectively.

The goal of the present study is to treat the issue of

interest when the dimensionless parameter kz(q)� is of the

order of more than unity and, hence, the perturbation

theory over this parameter cannot be applied to probe the

optical theorem written down in the form of relationship

(14).

3. The SCWA

Staying within the SCWA, where the initial X-ray wavefield is

taken in the form

Esc½x; z; hðxÞ�

¼ expðiq0xÞfexpðikzzÞ þ R1ðq0Þ exp½2ikzhðxÞ � ikzz�g

for z 
 hðxÞ;

¼ T1ðq0Þ expðiq0xÞ exp½iðkz � �zÞhðxÞ þ i�zz�

for z � hðxÞ; ð16Þ

we will evaluate the scattering amplitudes AR;T q; q0ð Þ substi-

tuting equation (16) into the right-hand sides of expression

(11).

Thus, the latter can be written as follows:

AR;Tðq; q0Þ ¼
i�k2

4	

Z
d2x exp½ixðq0 � qÞ�ZR;T q; q0; hðxÞ

� �
;

ð17Þ

where two non-averaged complex scattering lengths along the

z direction ZR½q; q0; hðxÞ� ¼
R hðxÞ

0 dz y1ðz; qÞEscðx; zÞ and

ZT½q; q0; hðxÞ� ¼
R hðxÞ

0 dz y2ðz; qÞEscðx; zÞ can be analytically

evaluated in the explicit form, namely:

ZR½q; q0; hðxÞ�

¼ T1ðqÞ

 
expfi½kz þ �zðqÞ�hðxg � 1

kz þ �zðqÞ

þ R1ðq0Þ exp½2ikzhðxÞ�
expfi½�kz þ �zðqÞ�hðxÞg � 1

�kz þ �zðqÞ

!

for hðxÞ � 0;

¼ T1ðq0Þ exp½iðkz � �zÞhðxÞ�

 
expfi½kzðqÞ þ �z�hðxÞg � 1

kzðqÞ þ �z

þ R1ðqÞ
expfi½�kzðqÞ þ �z�hðxÞg � 1

�kzðqÞ þ �z

!

for hðxÞ 
 0 ð18aÞ

and

ZT½q; q0; hðxÞ�

¼
expfi½kz � �zðqÞ�hðxÞg � 1

kz � �zðqÞ
þ R2ðqÞ

expfi½kz þ �zðqÞ�hðxÞg � 1

kz þ �zðqÞ

þ R1ðq0Þ exp½2ikzhðxÞ�
expfi½�kz � �zðqÞ�hðxÞg � 1

�kz � �zðqÞ

þ R1ðq0ÞR2ðqÞ exp½2ikzhðxÞ�
expfi½�kz þ �zðqÞ�hðxÞg � 1

�kz þ �zðqÞ

for hðxÞ � 0;

¼ T2ðqÞT1ðq0Þ exp½iðkz � �zÞhðxÞ�
expfi½�z � kzðqÞ�hðxÞg � 1

�z � kzðqÞ

for hðxÞ 
 0: ð18bÞ

It should be noticed that scattering lengths ZR½q; q0; hðxÞ�

and ZT½q; q0; hðxÞ� as functions of scattering angle �
(q ¼ k cos �, q0 ¼ k cos �0) reduce to zero at � = 0 and � = �cr,

respectively.

Formulae (14), (17) and (18a,b) represent by themselves the

mathematical foundation to test the optical theorem applic-

ability provided that an appropriate statistical average

procedure of both the left-hand and right-hand sides of

equation (14) will be explicitly carried out. For this, one has to

specify an averaging procedure over the random rough surface

and this is what we will go on to discuss in the next section.

4. Averaging procedure over the random rough surface

To evaluate the statistical averages of scattering amplitudes

involved in the optical theorem relationship [equation (14)],

we will utilize the following identity for averaging the fluctu-

ating quantity B[h(x)] (Kato, 1980; Sinha et al., 1988; see also

Chukhovskii, 2011)

S�1
2

R
d2x exp½ix q0 � qð Þ�B h xð Þ½ �

		 		2
¼ 2	ð Þ2�2 q0 � qð Þ B h xð Þ½ �

		 		2
þ B h xð Þ½ �B
 h xð Þ½ � � B h xð Þ½ �

		 		2n o
	
R

d2x exp½ix q0 � qð Þ�g2ð xj j=‘Þ;
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and for simplicity the two-point cumulant correlation

function g2ð xj j=‘Þ [g2 0ð Þ ¼ 1, ‘ is the correlation length] is

supposed to be isotropic varying along the distance xj j, and it

is the same for both the reflection and transmission GISAXS

channels.

By applying the Gaussian statistics for a configurational

average over the random rough surface and using the

above identity, the straightforward evaluations yield that the

Gaussian-averaged relationship [equation (14)] can be con-

verted to

kz R1ðq0Þ
		 		2ð1� f 2

RÞ þ �zT2
1 ðq0Þð1� f 2

TÞ�ðqcr � q0Þ

j k
¼
�2k2

ð4	Þ2

Z
d2q

�Rðq; q0Þ

kzðqÞ
þ
�Tðq; q0Þ

�zðqÞ
�ðqcr � q0Þ

� �

	

Z
d2x exp½ixðq0 � qÞ�g2ðjxj=‘Þ; ð19Þ

where the statistical scattering factors �R �; �0ð Þ and �T �; �0ð Þ

(q ¼ k cos �; q0 ¼ k cos �0) are defined as

�Rðq; q0Þ ¼ k2 ZRðq; q0; hÞZ
Rðq; q0; hÞ � ZRðq; q0; hÞ
		 		2h i

;

�Tðq; q0Þ ¼ k2 ZTðq; q0; hÞZ
Tðq; q0; hÞ � ZTðq; q0; hÞ
		 		2h i

ð20Þ

and the conventional Debye–Waller factors are equal to

fR ¼ expð�2k2
z�

2Þ; fT ¼ exp½�0:5ðkz � �zÞ
2�2�; ð21Þ

respectively.

Before proceeding further let us consider relationship (19)

in the case of infinite correlation lengths ‘!1.

In the case of ‘!1 the two-point cumulant correlation

function g2 xj j=‘ð Þ is equal to unity for any given distance xj j.

Then, it is easy to show that equation (19) reduces to

2 kz R1ðq0Þ
		 		2ð1� fRÞ þ �zT2

1 ðq0Þð1� fTÞ�ðqcr � q0Þ

j k

¼
�2k4

4

"
1

kz

ZRðq0; q0; hÞZ
�ðq0; q0; hÞ

þ
1

�z

ZTðq0; q0; hÞZ
þðq0; q0; hÞ�ðqcr � q0Þ

#
: ð22Þ

Furthermore, using the explicit expressions for the Gaussian-

averaged scattering-length squares involved in equation (22),

ZRðq0; q0; hÞZ
Rðq0; q0; hÞ ¼
8k2

zjR1j
2

�2k4
ð1� fRÞ;

ZTðq0; q0; hÞZ
Tðq0; q0; hÞ ¼
8�2

zT2
1

�2k4
ð1� fTÞ; ð23Þ

which relate to both the diffuse reflection and transmission

GISAXS channels, respectively, we can immediately obtain

that relationship (22) turns to identity.

In other words, we come to an assertion that the optical

theorem within the SCWA is strictly carried out in the case of

infinite correlation lengths ‘!1.

In general, in the case of finite correlation lengths ‘, in

order to numerically test the optical theorem some

Gaussian averages are required. In particular, the straight-

forward calculations yield the following expressions {for

reference, exp½i 
� 

ð Þh�� hð Þ = 0:5 exp½�0:5 
� 

ð Þ
2�2� 	

Erfc½�i 
� 

ð Þ�=21=2�}:

ZRðq; q0; hÞZ
Rðq; q0; hÞ

¼ 0:5 aR

		 		2fexp½�0:5ð
� 

Þ2�2�Erfc½�ið
� 

Þ�=21=2�

� 2Re½expð�0:5
2�2
ÞErfcð�i
Þ�=21=2

� þ 1g

þ 0:5 bR

		 		2fexp½�0:5ð�� �
Þ2�2
�Erfc½�ið�� �
Þ�=21=2

�

� 2Re½expð�0:5�2�2
ÞErfcð�i�Þ�=21=2

� þ 1g

þ ReðaRb
Rfexp½�0:5�2
ð
� �
 � �Þ2�

	 Erfc½�ið
� �
 � �Þ�=21=2
�

� exp½�0:5�2
ð
� �Þ2�Erfc½�ið
� �Þ�=21=2

�

� exp½�0:5�2
ð�
 þ �Þ2�Erfc½ið�
 þ �Þ�=21=2

�

þ expð�0:5�2�2ÞErfcði��=21=2ÞgÞ

þ 0:5 cR

		 		2fexp½�0:5�2
ð
þ � � �
 � 

Þ2�

	 Erfc½ið
þ � � �
 � 

Þ�=21=2
�

� exp½�0:5�2ð
þ � � �
Þ2�Erfc½ið
þ � � �
Þ�=21=2�

� exp½�0:5�2
ð� � �
 � 

Þ2�Erfc½ið� � �
 � 

Þ�=21=2

�

þ exp½�0:5�2
ð� � �
Þ2�Erfc½ið� � �
Þ�=21=2

�g

þ 0:5 dR

		 		2fexp½�0:5�2
ð�þ � � �
 � �
Þ2�

	 Erfc½ið�þ � � �
 � �
Þ�=21=2
�

� exp½�0:5�2
ð�þ � � �
Þ2�Erfc½ið�þ � � �
Þ�=21=2

�

� exp½�0:5�2
ð� � �
 � �
Þ2�Erfc½ið� � �
 � �
Þ�=21=2

�

þ exp½�0:5�2
ð� � �
Þ2�Erfc½ið� � �
Þ�=21=2

�g

þ ReðcRd
Rfexp½�0:5�2
ð
þ � � �
 � �
Þ2�

	 Erfc½ið
þ � � �
 � �
Þ�=21=2
�

� exp½�0:5�2
ð
þ � � �
Þ2�Erfc½ið
þ � � �
Þ�=21=2

�

� exp½�0:5�2
ð� � �
 � �
Þ2�Erfc½ið� � �
 � �
Þ�=21=2

�

þ exp½�0:5�2ð� � �
Þ2�Erfc½ið� � �
Þ�=21=2�gÞ ð24aÞ

and

ZRðq; q0; hÞ
		 		2
¼ 0:25jaR½expð�0:5
2�2

ÞErfcð�i
�=21=2
Þ � 1�

þ bRfexp½�0:5ð�þ �Þ2�2�Erfc½�ið�þ �Þ�=21=2�

� expð�0:5�2�2
ÞErfcð�i��=21=2

Þg

þ cRfexp½�0:5ð
þ �Þ2�2�Erfc½ið
þ �Þ�=21=2�

� expð�0:5�2�2
ÞErfcði��=21=2

Þg

þ dRfexp½�0:5ð�þ �Þ2�2�Erfc½ið�þ �Þ�=21=2�

� expð�0:5�2�2ÞErfcði��=21=2Þgj
2; ð24bÞ
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ZTðq; q0; hÞZ
Tðq; q0; hÞ

¼ ð aT

		 		2þ cT

		 		2Þ aT

		 		2f1� Re½expð�0:5�2
2
ÞErfcð�i
�=21=2

Þ�g

þ ð bT

		 		2þ dT

		 		2Þf1� Re½expð�0:5�2�2
ÞErfcð�i��=21=2

Þ�g

þ eT

		 		2ðexp½�0:5�2
ð� � �
 þ �� �
Þ2�Erfc½ið� � �
 þ �� �
Þ�=21=2

�

� 2Refexp½�0:5�2
ð�þ � � �
Þ2�Erfc½ið�þ � � �
Þ�=21=2

�g

þ exp½�0:5�2
ð� � �
Þ2�Erfc½ið� � �
Þ�=21=2

�Þ

þ ReðaTb
Tfexp½�0:5ð
þ �Þ2�2
�Erfc½�ið
þ �Þ�=21=2

�

� expð�0:5
2�2ÞErfcð�i
�=21=2Þ

� expð�0:5�2�2ÞErfcði��=21=2Þ þ 1gÞ

þ ReðaTc
Tfexp½�0:5ð2
� �Þ2�2�Erfc½�ið2
� �Þ�=21=2�

� 2 exp½�0:5ð
� �Þ2�2
�Erfc½�ið
� �Þ�=21=2

�

þ expð�0:5�2�2
ÞErfcði��=21=2

ÞgÞ

þ ReðaTd
Tfexp½�0:5ð
� �� �Þ2�2
�Erfc½�ið
� �� �Þ�=21=2

�

� exp½�0:5ð
� �Þ2�2
�Erfc½�ið
� �Þ�=21=2

�

� exp½�0:5ð�þ �Þ2�2
�Erfc½ið�þ �Þ�=21=2

�

þ expð�0:5�2�2ÞErfcði��=21=2ÞgÞ

þ ReðbTc
Tfexp½�0:5ð
� �� �Þ2�2�Erfc½�ið
� �� �Þ�=21=2�

� exp½�0:5ð�þ �Þ2�2
�Erfc½ið�þ �Þ�=21=2

�

� exp½�0:5ð
� �Þ2�2
�Erfc½�ið
� �Þ�=21=2

�

þ expð�0:5�2�2
ÞErfcði��=21=2

ÞgÞ

þ ReðbTd
Tfexp½�0:5ð2�þ �Þ2�2
�Erfc½ið2�þ �Þ�=21=2

�

� 2 exp½�0:5ð�þ �Þ2�2
�Erfc½ið�þ �Þ�=21=2

�

þ expð�0:5�2�2
ÞErfcði��=21=2

ÞgÞ

þ ReðcTd
Tfexp½�0:5ð
þ �Þ2�2�Erfc½ið
þ �Þ�=21=2�

� expð�0:5
2�2ÞErfcði
�=21=2Þ

� expð�0:5�2�2ÞErfcði��=21=2Þ þ 1gÞ ð25aÞ

and

ZTðq; q0; hÞ
		 		2
¼ 0:25jaT½expð�0:5
2�2

ÞErfcð�i
�=21=2
Þ � 1�

þ bT½expð�0:5�2�2ÞErfcði��=21=2Þ � 1�

þ cTfexp½�0:5ð
� �Þ2�2
�Erfc½ið
� �Þ�=21=2

�

� expð�0:5�2�2ÞErfcð�i��=21=2Þg

þ dTfexp½�0:5ð�þ �Þ2�2
�Erfc½�ið�þ �Þ�=21=2

�

� expð�0:5�2�2ÞErfcð�i��=21=2Þg

þ eTfexp½�0:5ð�þ �Þ2�2
�Erfc½ið�þ �Þ�=21=2

�

� expð�0:5�2�2ÞErfcði��=21=2Þgj: ð25bÞ

Herein, the complementary error function Erfc[w] for the

complex argument w is introduced. Correspondingly, the array

{
, �, �, 
, �, �} with z-component wavevector combinations


 ¼ kz þ �zðqÞ; � ¼ �kz þ �zðqÞ; � ¼ 2kz;


 ¼ kzðqÞ þ �z; � ¼ �kzðqÞ þ �z; � ¼ kz � �z ð26Þ

and two arrays {aR, bR; cR, dR}, {aT, bT, cT, dT; eT} with ampli-

tudes of the partial scattering lengths related to both the

reflection and transmission GISAXS channels

aR ¼ T1ðqÞ=
; bR ¼ T1ðqÞR1ðq0Þ=�;

cR ¼ T1ðq0Þ=
; dR ¼ T1ðq0ÞR1ðqÞ=�; ð27aÞ

aT ¼ R2ðqÞ=
; bT ¼ �R2ðqÞ=�; cT ¼ �R1ðq0Þ=
;

dT ¼ R1ðq0ÞR2ðqÞ=�; eT ¼ T2ðqÞT1ðq0Þ=� ð27bÞ

are determined by equations (27a) and (27b), respectively.

To complete the statistical description of a random rough

surface, we will choose the explicit expression for the two-

point cumulant correlation function as g2ð xj j=‘Þ = expð� xj j=‘Þ.
Then, in this case, the Fourier transform of the two-point

cumulant correlation function as chosen takes the form

g2ðq� q0Þ �

Z
d2x exp½iðq0 � qÞ�g2ðjxj‘Þ

¼
2	‘2

1þ ‘2ðq0 � qÞ2
� �3=2

: ð28Þ

5. Numerical run-through for probing the optical
theorem

Before proceeding further, additional comments are appro-

priate concerning some of the theoretical aspects of imple-

menting the SCWA.

If it would appear that the r.m.s. roughness � 	 max[|
|, |�|,

�, |
|, |�|, |�|] is smaller than unity, a consequent analysis shows

that the statistical scattering factors [equation (20)] reduce to

�2|T1(q)|2|T1(q0)|2 + 0(�3), �2|T2(q)|2|T1(q0)|2 + 0(�3), respec-

tively, for reflection and transmission, and then the SCWA

matches the first-order perturbation theory calculations based

on the Fresnel eigenfunctions in their regime of validity for the

diffuse GISAXS (Vinogradov et al., 1985).

In general, the above theoretical formulae (20), (21) and

(24a,b)–(28) have to be summed and substituted in equation

(19) to numerically probe the optical theorem for the typical-

valued {�0, �, ‘} parameters of interest.

We now present results of numerical calculations to clarify

how the optical theorem works for finite correlation lengths.

As examples, using expression (20) along with (24a,b)–

(27a,b) the statistical scattering factors �R �; �0ð Þ and �T �; �0ð Þ

versus the grazing scattering angle �=�cr are numerically

computed for the r.m.s. roughness k� = 200 and two values of

the grazing-incidence angle �0=�cr (�0=�cr = 2 in Fig. 2 and 3 in

Fig. 3).

It is seen that the statistical scattering factors �R �; �0ð Þ

depicted in Figs. 2(a) and 3(a) have narrow maxima very close

to the value of �=�cr = 1, proving the diffuse GISAXS scan

peak experimentally observed (see Yoneda, 1963; Vinogradov

et al., 1985; Chukhovskii, 2011 for details). As may be seen, the

factor �R �; �0ð Þ has a peak height that for �0=�cr = 2 (Fig. 2a) is

two times more than the corresponding peak height for �0=�cr

= 3 (Fig. 3a).

In contrast to the factors �R �; �0ð Þ, the statistical scattering

factors �T �; �0ð Þ depicted in Figs. 2(b) and 3(b) have equal-

height peaks at the scattering angle � value close to the inci-
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dent angle, �=�0 � 1, with a slight variation in the peak-to-tail

ratio and peak width.

Note that the peak widths of the statistical scattering factors

�T �; �0ð Þ related to the transmission GISAXS channel are

much larger than the peak widths of the corresponding peaks

of the factors �R �; �0ð Þ related to the reflection GISAXS

channel (cf. Figs. 2a, 2b and Figs. 3a, 3b).

To probe the optical theorem applicability within the

SCWA for finite correlation lengths k‘, k‘� 1, we will inte-

grate the right-hand side of equation (19) over the entire

angular range (�, ’), using the Fourier transform of the two-

point cumulant correlation function as chosen in equation

(28).

Taking into account that the azimuth angles ’ which

contribute to integrating the right-hand side of equation (19)

are of the order of k‘�0ð Þ
�1
� 1, the corresponding integra-

tion over the variable ’ can be analytically carried out.

Furthermore, the simple trapezium algorithm that we used

has been applied for numerical integration of the right-hand

side of equation (19) over the angular variable �. The

numerical integration step chosen is equal to 2	 10�3�cr.

The input data were the grazing-incidence angles of �0=�cr =

{0.5, 2, 3}, the r.m.s. roughness of k� = {100, 200} and the

correlation lengths of k‘ = {105, 106, 107}.

The numerical results of testing the optical theorem within

the SCWA are listed in Table 1.

How well the optical theorem works can be gauged by

introducing a figure of feasibility (FOF), which can be defined

as FOF = |diffuse terms � specular terms|/specular terms, at

the end of calculating all the terms related to the specular (the

left-hand side) and diffuse (the right-hand side) components

of equation (19).

For reference, each side of equation (19) contains two terms

related to the reflection and transmission GISAXS channels.

Clearly, the small values of FOF, for instance, when the FOFs

are less than 0.01, do mean that the optical theorem is satisfied

within an accuracy up to 1%.

Being dependent on the correlation length values of k‘, the

optical theorem within the SCWA seems to work well

provided that the FOF reaches a value much smaller than

unity.

Ultimately, as seen from Table 1, in the case of k‘ = 107,

k‘�2
0 � 1, the FOF values are rather small for all the input

data under consideration and, therefore, the optical theorem

works well even for �0=�cr = 0.5, i.e. in the case when the

incident angles are below the critical angle of the total

reflection region. Loosely speaking, the present study shows

that the infinite correlation length case [equation (22)] is

realized in practice under the condition k‘�2
0 � 1.
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Figure 3
Gaussian-averaged statistical scattering factors �R �; �0ð Þ (a) and �T �; �0ð Þ

(b) (scaled 	10�5) for the r.m.s. roughness k� = 200 and the grazing-
incidence angle �0=�cr = 3.

Figure 2
Gaussian-averaged statistical scattering factors �R �; �0ð Þ (a) and �T �; �0ð Þ

(b) (scaled 	10�5) for the r.m.s. roughness k� = 200 and the grazing-
incidence angle �0=�cr = 2.

Table 1
The computed FOF values as calculated from equation (19) for the
grazing-incidence angles �0=�cr: (a) = 0.5, (b) = 2, (c) = 3.

k�

k‘ 100 200

(a)
105 0.54543 0.53162
106 0.16252 0.15725
107 0.02261 0.02244

(b)
105 0.10426 0.16047
106 0.00065 0.01068
107 0.00006 0.00099

(c)
105 0.02972 0.10872
106 0.00118 0.01103
107 0.00004 0.00105



6. Concluding remarks

The study presented here supports the key idea regarding the

optical theorem applicability within the SCWA. A rigorous

description of the X-ray wavefield propagation through the

twofold medium has been based on the IWE [equation (3)]

adjusted with the Green function formalism and a statistical

Gaussian model of a random rough surface using the two-

point cumulant correlation function g2ð xj j=‘Þ. Unlike in the

DWBA method, to determine the adequate asymptotic solu-

tions of the non-averaged IWE [equation (3)] we have used

the SCWA for the initial X-ray wavefield approach. It has

allowed us to formulate the optical theorem beyond the small

effective values of the r.m.s. roughness �.

The present treatment of the optical theorem is based on

the two physical prerequisites mathematically pointed out in

Chukhovskii (2011). Let us briefly repeat them. One of them

is applying the SCWA to search asymptotic solutions of the

non-averaged IWE [equation (3)] using the initial continuous

wavefield in a self-consistent sense near a rough surface.

Another is applying the Gaussian-averaged isotropic surface

model in terms of the r.m.s. roughness � and correlation

length ‘.

A combination of both these assumptions along with

Fourier transform of the two-point cumulant correlation

function as defined by equation (28) has allowed us to

numerically test the optical theorem applicability for some

range of the GISAXS parameters.

By using the SCWA, the analytical expressions for statistical

scattering factors �R �; �0ð Þ and �T �; �0ð Þ of the diffuse

components of the reflection and transmission GISAXS have

been obtained for the Gaussian-averaged surfaces in terms of

the r.m.s. roughness � and correlation length ‘. These statis-

tical scattering factors multiplied by the Fourier transform of

the two-point cumulant correlation function have been used

for a numerical run-through to probe the optical theorem for

some correlation lengths k‘ = {105, 106, 107} and grazing-

incidence angles �0=�cr = {0.5, 2, 3}. It is shown that the optical

theorem applicability within the SCWA becomes effective

under the condition k‘�2
0 � 1.

The questions of how and whether the optical theorem

within the SCWA works and whether it has any validity in

cases where the two-point cumulant correlation function

differs from expression (28) should be developed anew.

One point remains constant, namely: in the limit of infinite

correlation lengths, k‘!1, for any shape of the two-point

cumulant correlation function and, hence, any type of random

rough surface the optical theorem within the SCWA does

strictly hold.

Valuable discussions with I. V. Kozhevnikov, A. M. Poly-

akov and S. V. Salikhov are gratefully acknowledged. S. V.

Salikhov is thanked for rendering Fig. 1.
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